Главная   Динамика   Кинематика   Hазад   Выход    

 

 

 
.: Сила. Второй закон Ньютона :.
 
 

В дополнение к кинематическим характеристикам движения (перемещение, скорость ускорение и др.) мы ввели новую величину, характеризующую поведение тела под влиянием другого тела – массу тела m. Однако её недостаточно для описания причин возникновения ускорения тела. Наличие ускорения у данного тела зависит от влияния на него другого тела, а масса m характеризует свойства самого тела независимо от того, какое влияние оно испытывает. Мы уже знаем, что при взаимодействии двух тел ускорения получают оба тела и что числовые значения этих ускорений обратно пропорционально массам тел. Однако нас обычно интересует движение одного какого-то тела, и тогда нам «безразлично», что это тело взаимодействует с каким-то другим телом. Если, к примеру, ми изучаем движение автомобиля, то знаем, что он взаимодействует с поверхностью Земли. Нас интересует движение автомобиля, а не Земли. Как известно, числовые значения ускорений двух взаимодействующих тел обратно пропорциональны их массам:


или:

a1m1=a2m2


Это равенство показывает, что произведения массы и приобретённого при взаимодействии ускорения по своему числовому значению одинаковы для обоих взаимодействующих тел. Для любого из двух взаимодействующих тел произведение ma отображает как свойства самого тела, так и влияние на него второго тела. Если влияние второго тела на данное тело изменится, то и величина ma также изменится. Таким образом, величину та можно принять за меру влияния второго тела на данное тело массой m. Величину, численно равную произведению массы данного тела и его ускорения, называют силой, действующей на данное тело:

F= ma


Поскольку ускорение — векторная величина, то и сила — величина векторная, и предыдущую формулу нужно записать так:


Очевидно, что вектор силы и вектор ускорения, которое эта сила сообщает телу, одинаково направлены, ведь масса — величина скалярная. А при умножении вектора на скаляр получаем вектор того же направления, изменяется только его значение.
Определение силы содержит и способ её экспериментального нахождения. из курса седьмого класса вы знаете, что силу можно найти иначе. Влияние одного тела на другое вызывает деформацию — изменение формы тела. Деформация зависит от значения силы. следовательно, по деформации можно определить приложенную силу. В некоторых случаях можно найти действующую силу, воспользовавшись известными из опытов законами, которым подчиняются те или иные виды сил (сила трения, сила электрического взаимодействия заряженных тел и др.).
Из формулы F= ma можно найти единицу измерения силы. В СИ берут такую единицу силу, которая телу массой 1 кг сообщает ускорение 1м/с2. Эта единица называется ньютоном (Н).
Выше мы говорили лишь о влиянии одного тела на данное. Однако тело может взаимодействовать не с одним, а с несколькими телам. Тогда на него будет взаимодействовать не одна, а несколько сил одновременно. Эти силы можно сложить по правилу параллелограмма и найти равнодействующею всех приложенных сил. Ускорение, которое телу сообщают все силы вместе равно ускорению, которое получило бы тело под действием равнодействующей силы.
Следовательно, в формуле:


под F нужно понимать равнодействующею всех приложенных к телу сил.
Связь между силой, массой и ускорением тела F= ma. выражает второй закон Ньютона, который формулируется так: сила, действующая на тело, равна произведению массы тела и его ускорения. Из этого уравнения чётко видно, что сила F – причина ускорения. Решив уравнение F= ma, получим выражение, показывающая изменение координаты тела со временем. Таким образом, можно узнать положение движущегося тела в любой момент времени. Поэтому уравнение, выражающие второй закон Ньютона, называют уравнением движения. Если координата x изменяется со временем, то тело движется вдоль оси X с постоянным ускорением. В соответствии со вторым законом Ньютона это значит, что к телу приложена постоянная сила Fx, направленная вдоль оси и равная по модулю max.

 
     
 
 
.:Примеры:.
 
 

Второй закон Ньютона очень часто применяется для решения задач. Рассмотрим это на конкретном примере. Пусть имеются два тела с массами m1 и m2, которые связаны нитью, перекинутой через блок, установленный на вершине наклонной плоскости. Пренебрегая массами нити и блока, можно найти ускорение, с которым будет двигаться эта система тел. Груз m1 взаимодействует с наклонной плоскостью, нитью и Землёй. Данные тела являются источниками четырёх си: силы реакции опоры N, силы трения скольжения µ N, сила натяжения нити Т, и сила тяжести m1g. Груз m2 взаимодействует лишь с Землёй и нитью, поэтому к нему приложены только две силы – сила тяжести m2g,и сила натяжения нити Т.(Пример №1). Если приложенных к грузам сил отлична от нуля, то грузы начнут двигаться с ускорением, которое можно найти с помощью второго закона Ньютона. Направления движения тел в общем случае зависят от масс тел, угла наклона плоскости и коэффициента трения. Если перетягивая груз m2,то сила трения, приложенная к телу m1, оказывается направленной вниз. Применительно к телу m1 второй закон Ньютона, записывается в проекциях на оси X и Y, даёт: m1a= T-m1gsina- µ N, 0=N-m1gcosa, Применяя тот же закон к телу m2, получаем: m2а= m2п-Т, Из этих уравнений находим ускорение: а=((m2-m1sina- µm1cosa)/m2+m1)g, Если предположить, что перетягивает тело m1(сила трения изменяется на противоположную), получаем другой ответ: а=((msina-m2-µm1cosa)/m2+m1)g, Так как модули ускорения а>0, то заданных значениях а(угол) и µ, первое из получившихся уравнений справедливо при условии: m2>=m1(sina+µcosa), а второе: m2<=( sina-µcosa), Следовательно второй закон Ньютона позволяет добить массу информации о рассматриемай системе.

 
     
Используются технологии uCoz